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to diffusion, a convection term is present. Our overall aim
is to look at the effect of convection on the existence andWhat is the long-time effect of adding convention to a discretised

reaction-diffusion equation? For linear problems, it is well known stability of the true and spurious fixed points.
that convection may denormalise the process, and, in particular, The potential denormalising effect of a convection term
eigenvalue-based stability predictions may be overoptimistic. This can dramatically influence the behaviour close to a truework deals with a related issue—with a nonlinear reaction term,

fixed point. In particular, a superficial eigenvalue test maythe nonnormality can greatly influence the long-time dynamics. For
be inappropriate, leading to overoptimistic predictions. Ina nonlinear model problem with Dirichlet boundary conditions, it

is shown that the basin of attraction of the ‘‘correct’’ steady state Section 2 we perform a ‘‘local attractivity’’ analysis and
can be shrunk in a directionally biased manner. A normwise analysis show that the nonnormality causes the corresponding
provides lower bounds on the basin of attraction and a more reveal-

lower bound on the basin of attraction to become tiny. Ining picture is provided by pseudo-eigenvalues. In extreme cases,
Section 3, we introduce some alternative analysis, basedthe computed solution can converge to a spurious, bounded, steady

state that exists only in finite precision arithmetic. The impact of on pseudo-eigenvalues, that allows qualitative predictions
convection on the existence and stability of spurious, periodic solu- to be made about the largest practical time step. The non-
tions is also quantified. Q 1996 Academic Press, Inc. normality can also lead to spurious steady states that do

not exist in exact arithmetic, but which arise in the presence
of rounding errors. Section 4 provides examples and analy-1. INTRODUCTION
sis of this behaviour. In Section 5, we consider spurious
periodic solutions that evolve when the time step is in-Traditional convergence and linear stability analysis
creased beyond the linear stability limit, and we show howdoes not apply to long term numerical simulations of non-
the convection term can influence their stability.linear evolutionary differential equations. It is now well

In the remainder of this section, we introduce the differ-established that even when a time step is chosen according
ential equation and the corresponding discrete approxima-to a standard linearisation, the long term numerical solu-
tion, and we set up some notation. We consider the reac-tion may fail to converge to a true steady state and may,
tion-convection–diffusion equationinstead, diverge, or settle down to a misleading, spurious

value.
Several authors have recently looked at these phenom-

ut 1 aux 5 buxx 1 f (u), 0 , x , 1, t . 0, (1.1)ena, using techniques from dynamical systems theory.
Analysis for autonomous ordinary differential equations
can be found in [5, 8–10, 24]. Other authors [2, 4] have

with a, b . 0 constant, f (u) 5 u(1 2 u), u(x, 0) 5 f(x)added a space dimension and considered the corresponding
given, and with boundary conditions specified at x 5 0 andreaction-diffusion equations. The main theme of this paper
x 5 1. The two kinds of boundary conditions that weis to investigate these issues in the case where, in addition
consider will be introduced below.

A finite difference discretisation with constant space step1 Email: na.dhigham@na-net.ornl.gov. The work of this author was
supported by the Engineering and Physical Sciences Research Council Dx and time step Dt produces approximations Un

j P u( jDx,
of the UK and by a joint research grant from the Research Council of nDt). We use central differences for the diffusion term and
Norway and the British Council. forward differences (Euler’s method) for the time deriva-2 Email: bryn@imf.unit.no. The work of this author was supported by

tive. For the convection term, we consider three possibili-a joint research grant from the Research Council of Norway and the
British Council. ties: central, forward, and backward differences.
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TABLE IUsing central differences for ux produces the formula

Matrix Coefficients for the Discretised Problem
Un11

j 2 Un
j

Dt
1 a

Un
j11 2 Un

j21

2Dx (1.2) ux c d e

Central r 1 r̃/2 1 2 2r r 2 r̃/2
5 b

Un
j11 2 2Un

j 1 Un
j21

Dx2 1 f (Un
j ). Backward r 1 r̃ 1 2 2r 2 r̃ r

Forward r 1 2 2r 1 r̃ r 2 r̃

Setting

It is convenient to write the schemes in matrix–vectorr 5 bDt/Dx2, r̃ 5 aDt/Dx, (1.3)
form, using

we may write (1.2) as

Un11
j 5 Un

j 2
r̃
2

(Un
j11 2 Un

j21)
(1.4) Un :53

Un
1

Un
2

_

Un
N

4[ RN

1 r(Un
j11 2 2Un

j 1 Un
j21) 1 Dtf (Un

j ).

This is an explicit scheme, which computes the approxima-
tions at time (n 1 1)Dt from those at the previous time level. to denote the numerical approximation at time level n. We

Approximating the convection term by backward differ- concentrate on two types of boundary condition, periodic
ences (upwinding) changes the scheme from (1.4) to and (nonhomogeneous) Dirichlet. This is done to make

the analysis as clean as possible. In the final section, we
briefly discuss the likely effect of changing to other bound-Un11

j 5 Un
j 2 r̃(Un

j 2 Un
j21)

(1.5) ary conditions. With periodic boundary conditions, using
1 r(Un

j11 2 2Un
j 1 Un

j21) 1 Dtf (Un
j ). Dx 5 1/N, the schemes have the form

This may be rewritten as Un11 5 CUn 1 Dtf(Un), (1.8)

where C [ RN3N is a circulant matrix of the form
Un11

j 5 Un
j 2

r̃
2

(Un
j11 2 Un

j21)
(1.6)

1 Sr 1
r̃
2D (Un

j11 2 2Un
j 1 Un

j21) 1 Dtf (Un
j ),

C 5 circ(d, e, 0, 0, ..., 0, c) :5 3
d e 0 ) 0 c

c d e 0 5 0

0 c d e 5 _

_ 5 5 5 5 0

0 5 5 5 5 e

e 0 ) 0 c d

4 ,which shows that using backward differences for ux is
equivalent to using central differences and adding artificial
diffusion to the problem.

Similarly, a forward difference (downwind) approxima-
tion to ux leads to the formula

(1.9)

Un11
j 5 Un

j 2
r̃
2

(Un
j11 2 Un

j21)
(1.7)

and

1 Sr 2
r̃
2D (Un

j11 2 2Un
j 1 Un

j21) 1 Dtf (Un
j ).

f(U) 53
f (U1)

f (U2)

_

f (UN)
4 .

These finite difference schemes are standard, and their
local accuracy and linear stability properties are analyzed
in many references; see, for example, [14, 21, 22]. In this
work we discuss phenomena that are common to all three
choices, and hence we do not add to the debate about Table I gives the values of c, d, e that arise for the three

different discretisations.which version is ‘‘best.’’
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Imposing Dirichlet boundary conditions u(0, t) 5 u(1, assume that i?i2 and i?iy are ‘‘natural’’ norms with which
to measure vectors and matrices.t) 5 1, with Dx 5 1/(N 1 1), leads to

For a nonsingular D [ CN3N we define the vector D-
norm byUn11 5 TUn 1 cp 1 eq 1 Dtf(Un), (1.10)

ixiD 5 iD21xi2. (1.13)where T [ RN3N is a tridiagonal matrix of the form

The corresponding induced matrix norm satisfies

iAiD 5 iD21ADi2 . (1.14)
T 5 tridiag (c, d, e) :53

d e

c d 5

5 5 e

c d
4 , (1.11)

Given d . 0, U [ RN, and a vector norm i?i, we let
Bi?i(d, U) denote the open ball of radius d around U; that is,

Bi?i(d, U) :5 hY [ RN : iY 2 Ui , dj.
with c, d, e defined in Table I, and

2. ATTRACTIVITY OF THE TRUE FIXED POINT

Given an iteration
p 5 3

1

0

_

0

0

4 , q 5 3
0

0

_

0

1

4 .
Un11 5 G(Un), G : RN ° RN, (2.1)

U* is said to be a fixed point, or steady state, if U* 5
G(U*). This section concerns local attractivity of fixed

Note that iterations (1.8) and (1.10) share the fixed point points and, hence, we make the following definitions.
U*i ; 1 (corresponding to the steady state u(x, t) ; 1 of

DEFINITION 2.1 Given a fixed point U* of (2.1), thethe continuous problem). This work concerns the attrac-
basin of attraction of U* is the set of all points U0 suchtiveness of this fixed point, and we will show that in the
that the sequence defined by (2.1) satisfies Un R U* ascase of Dirichlet boundary conditions, convection can dra-
n R y.matically affect the behavior. We tacitly assume that u(x,

t) ; 1 is the ‘‘correct’’ solution. To justify this, the appendix DEFINITION 2.2. A fixed point U* of (2.1) is said to be
gives conditions on the initial data under which the solution locally attractive if it has a basin of attraction that contains
of the Dirichlet problem converges to u(x, t) ; 1. an open neighborhood of U*.

We conclude this section with some notation. Given
We continue with a somewhat heuristic discussion inA [ CN3N, r(A) denotes the spectral radius:

order to motivate the main analysis.
Setting U0 5 U* 1 V0, where V0 [ RN is small, andr(A) 5 maxhulu : l is an eigenvalue of Aj.

linearising, we find that U1 5 U* 1 V1, where

Given x [ CN, the Euclidean and infinity vector norms are
V1 P G9(U*)V0. (2.2)

Here G9 denotes the Jacobian of G. The relation (2.2)ixi2 :5 SON
i51

uxiu2D1/2

,
shows that after one iteration, the displacement from the
fixed point is amplified by the Jacobian matrix, G9(U*).ixiy :5 max

1#i#N
uxiu,

Continuing the linearisation, after m steps we have Um 5
U* 1 Vm, where

respectively. We note, for future reference, the inequality
Vm P G9(U*)mV0. (2.3)

ixiy # ixi2 # ÏNixiy . (1.12)
Hence, if the linearisation is valid, the local attractivity or
repulsion of the fixed point is determined by the powersThe matrix norms induced by these vector norms will also

be denoted i?i2 and i?iy . We recall that iAi2 5 r(A) if of the Jacobian matrix. It is well known that for any
A [ RN3NA [ CN3N is normal. Throughout this work we implicitly
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Am R 0 as m R y ⇔ r(A) , 1. (2.4) clude a proof of the theorem, since this will be used later.
For simplicity we assume that G9(U*) can be made normal
by a similarity transformation. This is the case, of course,This suggests that if r(G9(U*)) , 1 then U* will attract

the iterates when U0 is sufficiently close to U*. This can, if G9(U*) is diagonalisable. (If this assumption is removed,
then the theorem remains true if the condition s 1 « , 1of course, be made rigorous—see Theorem 2.1 below.

However, even when A [ RN3N satisfies r(A) , 1, if A is for (2.5) is tightened to s 1 2« , 1.)
not normal then it is possible for the powers Am to become

THEOREM 2.1. (Ostrowksi) [15, Theorem 10.1.3]. Letarbitrarily large for some finite m. To illustrate this, we
U* be a fixed point of the iteration (2.1) and suppose thatconsider the iteration (1.10) with backward differencing,
G is Fréchet-differentiable at U*. Suppose, further, that ausing a 5 1 and N 5 32 (so that Dx 5 1/(N 1 1) 5 1/33).
nonsingular matrix D [ CN3N exists for which D21G9(U*)DWe let the diffusion coefficient, b, range over the values
is normal. If s :5 r(G9(U*)) , 1, then U* is locally attrac-h1022, 1022.5, 1023, 1023.5j. For each b we choose a time step
tive. Furthermore, the basin of attraction of U* contains the

Dt so that r(G9(U*)) # 0.85 at the fixed point U*i ; 1.
ball Bi?iD (d, U*), where d . 0 is such that(More precisely, we take Dt 5 0.9Dtlim , where Dtlim is the

linear time step limit defined in (2.24).) In Fig. 2.1 we plot
iG(U) 2 G(U*) 2 G9(U*)(U 2 U*)iD

(2.5)the power norms iG9(U*)miy against m. In the figure, the
maximum height of the curve increases as b decreases. # «iU 2 U*iD, ;U [ Bi?iD (d, U*),
Hence, although the powers ultimately decay in each case,
as the convection term becomes more dominant the level with s 1 « , 1,
of intermediate growth becomes considerable. With b 5
1023.5, some powers of the Jacobian are larger than 1014. Proof. Since D21G9(U*)D is normal, we have
In such a case we should be very wary of the linearisation
process. Perhaps V0 is sufficiently small for (2.2) to be iG9(U*)iD 5 s. (2.6)
a reasonable approximation, but, after several iterations,
G9(U*)mV0 in (2.3) could be many orders of magnitude Because G is Fréchet-differentiable at U*, given any « .
larger, and hence Um could be far from U*. In general, 0, there exists d 5 d(«) . 0 such that
V0 would have to be extremely small in order for each
subsequent Vm to be small. Hence, although the condition iG(U) 2 G(U*) 2 G9(U*)(U 2 U*)iD

(2.7)r(G9(U*)) , 1 guarantees local attractivity, if the powers
# «iU 2 U*iD , ;U [ Bi?iD(d, U*).of G9(U*) become large, then we can expect the basin of

attraction to be tiny. We emphasise that this is a linear
phenomenon in the sense that it is caused by the Jacobian Hence, for any U0 [ Bi?iD (d, U*),
and does not require any particular type of nonlinearity
in G. iU1 2 U*iD 5 iG(U0) 2 U*iD

The fact that convection-dominated problems can pro-
# iG(U0) 2 G(U*) 2 G9(U*)(U0 2 U*)iDduce nonnormal matrices whose powers become large has

been widely observed in the context of linear stability for 1 iG9(U*)iDiU0 2 U*iD
discretised partial differential equations. This corresponds

# (s 1 «)iU0 2 U*iD.to examining the long-term behaviour of finite difference
solutions to (1.1) when f(u) ; 0 or f (u) 5 2u. Here, a

Choosing « so that s 1 « 5 r , 1 and repeating thiscondition of the form r(A) , 1 guarantees eventual decay
argument on each iteration, we see thatof the solution, but, to control intermediate growth, it is

also necessary for Am to be bounded above by a reasonable
Un [ Bi?iD (d, U*), ;nconstant for all m $ 0. The inadequacy of the spectral

radius condition has been appreciated for some time; see,
for example, [1, Section 10.6; 3; 14; 21]. A thorough treat- and
ment for the central difference discretisation can be found
in [7]. iUn 2 U*iD # rniU0 2 U*iD R 0, as n R y,

Trefethen and co-workers [6, 17, 18, 23] have also exam-
ined nonnormality effects. The pseudo-eigenvalue analysis and the result follows.
developed in these references will be discussed in the

We are concerned with iterations of the formnext section.
We now introduce Ostrowski’s theorem, which is essen-

tially a formalisation of the linearisation process. We in- Un11 5 MUn 1 Dtf(Un) 1 y, (2.8)
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TABLE II [G(U) 2 G(U*) 2 G9(U*)(U 2 U*)]j and wj 5 Uj 2
U*j , and let w2 denote the vector with jth component equalValues of a for the Dirichlet Problem
to w2

j . With this notation, (2.12) becomes vj 5 2Dtw2
j .

ux a Now, using the inequality (1.12) and exploiting the fact
that D is diagonal, we have

Central Ï(1 1 P)/(1 2 P)
Backward Ï1 1 2P

iviD 5 DtiD21w2i2Forward Ï1/(1 2 2P)

5 DtiD(D21w)2i2

# DtÏNiD(D21w)2iy

with M [ RN3N, f (u) 5 u(1 2 u), and y [ RN. We suppose
# DtÏNiDiyiD21wi2

ythat there is a nonsingular diagonal matrix D such that
D21G9(U*)D is normal. The following corollary applies # DtÏNiDiyiD21wi2

2
Ostrowski’s theorem to this case.

5 DtÏNiDiyiwi2
D .

COROLLARY 2.1. Suppose that the iteration (2.8) has a
locally attractive fixed point U*, with r(G9(U*)) 5: s , 1.

It follows that (2.5) is satisfied with d 5 «/(DtÏNiDiy),Suppose, further, that there exists a nonsingular diagonal
where « is any number smaller than 1 2 s.matrix D [ CN3N such that D21G9(U*)D is normal. Then

the basin of attraction of this fixed point contains the ball We remark that our choice of nonlinear reaction term
Bi?iD (d, U*) for any d , (1 2 s)/(DtÏNiDiy). f (u) 5 u(1 2 u) leads to the simple relation (2.12). How-

ever, it is clear from (2.10) that the analysis can be adaptedProof. The Jacobian of the map in (2.8) is
to any f (u) for which a suitable second derivative bound
is available.G9(U) 5 M 1 Dt diag ( f 9(U1), f 9(U2), ..., f 9(UN)). (2.9)

The iterations (1.8) and (1.10) possess fixed points with
U*i ; 1. For the Dirichlet case, (1.10), the Jacobian at theIn the expression G(U) 2 G(U*) 2 G9(U*)(U 2 U*), the
fixed point is tridiagonal,linear part of G disappears, and we find that

[G(U) 2 G(U*) 2 G9(U*)(U 2 U*)]j
(2.10)

G9(U*) 5 tridiag (c, d 2 Dt, e). (2.13)

5 Dt[ f (Uj) 2 f (U*j ) 2 f 9(U*j )(Uj 2 U*j )].
The eigenvalues are

Now, a Taylor expansion gives

d 2 Dt 1 2 Ïce cos S lf
N 1 1D, l 5 1, 2, ..., N. (2.14)

f (Uj) 2 f ( U*j ) 2 f 9(U*j )(Uj 2 U*j )
(2.11)

Letting
5

(Uj 2 U*j )2

2
f 0(uj),

a :5 Ïc/e, D :5 diag(1, a, a2, ..., aN21), (2.15)
for some uj between Uj and U*j . In our case, f is quadratic
with f 0 ; 22 (constant) and so, in (2.10),

the similarity transformation

[G(U) 2 G(U*) 2 G9(U*)(U 2 U*)]j 5 2Dt(Uj 2 U*j )2.
G9(U*) ° D21G9(U*)D

(2.16)(2.12)
5 tridiag(Ïce, d 2 Dt, Ïce)

The expression (2.12) is a componentwise result. In order
produces a symmetric and, hence, normal matrix. Takingto make use of Theorem 2.1 we must convert this to a
the values of c, d, and e from Table I, the correspondingnormwise bound of the form (2.7). We use the D-norm,
value for a is displayed in Table II, in terms of the gridfor which
Péclet number, P, defined as

iG9(U*)iD 5 r(G9(U*)),

P :5
aDx
2b

. (2.17)
since D21G9(U*)D is normal. For convenience, write vj 5
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Note that for a fixed Dx, P increases with the convection In general, (2.22) is much less stringent than (2.18) and
for a given s it is independent of the convection and diffu-coefficient a, but for a fixed problem, P R 0 as Dx R 0.

Since D is diagonal in (2.15), we have iDiy 5 maxh1, sion parameters.
It is important to note that Corollary 2.1 constructs auauN21j. We see from Table II that for central and backward

differences, uau . 1 for all parameter values. It is possible region that is contained in the basin of attraction; in other
words, it provides a lower bound on the size of the basinfor uau to be very large. With central differences, this hap-

pens when P is close to 1. (When P 5 1 the Jacobian of attraction. For the Dirichlet problem, the region con-
structed depends heavily upon the amount of convectionbecomes defective, and Corollary 2.1 does not apply.) A

similar effect in the context of linear stability is observed in and, in particular, its shape can be highly distorted when
compared with a ball in a ‘‘natural’’ norm such as i · i2 or[7]. With backward differences, a increases monotonically

with P. In the case of forward differences, uau is largest i · iy . For the periodic problem, the region constructed is
independent of the amount of convection and is not direc-when P is close to As.

When uau $ 1, it follows from Corollary 2.1 that U*i ; tionally biased.
We now present some numerical experiments to test the1 will attract any initial condition for which

relevance of this analysis. We begin with the Dirichlet
problem, using backward differences (upwinding) for ux .idiag(1, a21, ..., a2N11)(U0 2 U*)i2

Here c . e . 0 in Table I and the eigenvalues in (2.14)
, (1 2 s)/(DtÏNuauN21), are real. It follows that as Dt increases away from zero,

the local attractivity condition r(G 9(U*)) , 1 is first vio-
or, equivalently, lated when an eigenvalue reaches 21. With all other pa-

rameters fixed, the time step at which r(G 9(U*)) , 1 fails
idiag(aN21, aN22, ..., 1)(U0 2 U*)i2

(2.18)
is given by

, (1 2 s)/(DtÏN).
(1 2 cos(Nf/(N 1 1)))

(2.23)If uau is large, then the exponential factors in (2.18) can be
very significant. In this case the inequality is most strict @S1 1

2b
Dx2 1

a
Dx

1 2! b
Dx2 S b

Dx2 1
a

DxDD .
for components with small index. In particular, if only a
single component differs from U*, then (2.18) requires

For large N, cos(Nf/(N 1 1)) P 21, so we follow the usual
convention [14, p. 43] of regarding the time step limit asu(U0 2 U*)1u , (1 2 s)/(DtÏNuauN21) (2.19)

Dtlim :5
(2.24)

for the first component, but only

u(U0 2 U*)Nu , (1 2 s)/(DtÏN) (2.20) 2@S1 1
2b

Dx2 1
a

Dx
1 2! b

Dx2 S b
Dx2 1

a
DxDD .

for the last component. However, since Dx 5 1/(N 1 1),
From Ostrowski’s theorem, any time step Dt , Dtlim willit follows that, for a fixed problem, aN21 R exp(a/2b) as
therefore make U* locally attractive.N R y with central, backward, or forward differences.

Our policy was to fix N 5 32 (giving Dx 5 1/33) andHence, the nonnormality effect of the convection term
a 5 1. We considered a range of diffusion coefficients withreaches a limit as the discretisation becomes finer. We also
log10 b 5 h22, 22.25, 22.5, ..., 23.25j, and in each casemention that the quantity exp(a/2b) arises in [19] as a
we chose Dt 5 0.9 Dtlim , which made the fixed point locallymeasure of the nonnormality of the underlying convec-
attractive. The spectral radius r(G 9(U*)) was less thantion–diffusion operator.
0.83 in each case. (Note that the parameters are within theIn the case of periodic boundary conditions, the Jacobian
range used for Fig. 2.1.) For the first set of tests, we usedfor (1.8) at U*i ; 1 is
initial conditions of the form [1 1 c, 1, 1, ..., 1]T. Starting
with c 5 10216 we performed the iteration for 1000 stepsG 9(U*) 5 circ(d 2 Dt, e, 0, 0, ..., 0, c). (2.21)
and tested whether Un R U*. We continued this process,
increasing c by a factor of 10 until we reached a levelThe matrix is circulant and, hence, normal, so we can take
where the iteration failed to converge. Convergence wasD to be the identity matrix. Corollary 2.1 then shows that
deemed to have occurred ifthe basin of attraction for U* contains the region where

iU0 2 U*i2 , (1 2 s)/(DtÏN). (2.22) iU1000 2 U*iy , 1025. (2.25)
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Corollary 2.1 can be pessimistic. However, the bounds do
capture two important features of the actual results:

• The component U1 is sensitive to the relative amount
of convection, whilst UN is not.

• The size of c1
max decreases approximately like a2N, as

does the lower bound. (The product aN c1
max is included

in the table.)

Next we consider the periodic problem, with backward
differences. In this case the Jacobian (2.21) has eigenvalues

(c 1 e) cos(ul) 1 d 2 Dt 1 i(e 2 c) sin(ul),
(2.26)

ul 5
lf

N 1 1
, l 5 1, 2, ..., N.

Hence the l th eigenvalue, ll , satisfies
FIG. 2.1. Power norms iG9(U*)miy against m, on the Dirichlet prob-

lem with backward differencing. The maximum height increases as the ullu2 5 4ce cos2 (ul) 1 2(c 1 e) (d 2 Dt) cos (ul)diffusion coefficient b decreases.
1 (d 2 Dt)2 1 (e 2 c)2.

Since ce . 0, the maximum modulus occurs at an extremeHence, we recorded c1
max , which we define to be the pertur-

eigenvalue, where l 5 1 or N. As for the Dirichlet case, itbation beyond which (2.25) fails. Our convergence condi-
is reasonable to majorise over the continuous range u [tion was determined after some experimentation. In the
[0, f], giving the eigenvalue-based time step limittests, we found that if the iterates failed to converge to

U* then they became unbounded (rather than converging
to some other finite steady state). However, if b is reduced Dt*lim :5 2@S1 1

4b
Dx2 1

2a
DxD . (2.27)

to 1023.5 then the ‘‘cutoff’’ between convergence and non-
convergence is less sharp. Here Un can settle down to a
state that is close to, but significantly different from U*. Hence, from Ostrowski’s theorem, Dt , Dt*lim makes U*

locally attractive. We repeated the tests described above,This behaviour is caused by rounding errors and will be
discussed in Section 4. using the same values for N, a, and b, and with Dt 5 0.9

Dt*lim . The spectral radius of the Jacobian was less thanTable III gives the results. The table also gives the value
of a in (2.15) and the bound (2.19) on ucu for which conver- 0.985 in each case. We found that the analogues of c1

max

and cN
max were always equal to 10; they did not vary withgence is guaranteed. The corresponding results that arise

with initial conditions of the form [1, 1, ..., 1, 1 1 c]T are b. In this case, the lower bound (2.22) is within two orders
of magnitude of the actual largest allowable perturbationalso presented in the table. Here, cN

max is defined in an
analogous way to cN

max . and captures the insensitivity to the relative amount of con-
vection.In Table III we see that the lower bounds provided by

TABLE III

Attractivity for the Dirichlet Problem with Backward Differencing

log10
b

22.25 22.5 22.75 23 23.2522

c1
max 1e 1 1 1e 1 0 1e 2 3 1e 2 6 1e 2 8 1e 2 11

Bound from (2.19) 8e 2 10 5e 2 13 2e 2 16 4e 2 20 6e 2 24 9e 2 28
a 2.0 2.5 3.3 4.2 5.6 7.4
aNc1

max 2e 1 10 3e 1 12 8e 1 12 3e 1 13 2e 1 15 9e 1 15
cN

max 1e 1 1 1e 1 1 1e 1 1 1e 1 1 1e 1 1 1e 1 1
Bound from (2.20) 2.0 1.5 1.3 1.1 0.9 0.8
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3. PSEUDO-EIGENVALUE ANALYSIS

At the start of the previous section we showed that the
local attractivity of a fixed point is closely related to the
behaviour of the powers of the Jacobian. The examples
that we tested involved matrices A for which D21 AD 5
N, with N normal. It follows that Am 5 DNmD21. Letting
s 5 r(A), we have iNmi2 # iNim

2 5 sm, and so

iAmi2 # k2(D)s m, (3.1)

where k2(D) :5 iD21i2iDi2 is the (normwise) condition
number of D. For the diagonal D in (2.15), assuming
uau $ 1, we have k2(D) 5 uauN21. Although (3.1) establishes
that iAmi2 R 0 as m R y when s , 1, as a bound on
iAmi2 it can be very pessimistic. This type of norm-based
inequality lies at the heart of the analysis in Section 2, FIG. 3.1. Spectrum and pseudospectrum boundaries, with « 5 1025,
and, as the numerical examples indicated, it can lead to 1027, 1029, of the Jacobian for a Dirichlet problem with backward differ-

ences.overconservative predictions. Overall, if we wish to know
how big iAmi2 can become, then neither r(A) nor k2(D)
can provide sharp estimates when A is far form normal.

with circles. It is clear from the figure that the spectrumTrefethen and Reddy [17, 18] recognised this state of affairs
is very sensitive to perturbations, and L1029(A) containsand have put forward an alternative style of analysis, based
points outside the unit disk.on pseudo-eigenvalues, that helps to fill the gap between

We let D denote the open unit disk in the complex plane,the spectral and normwise approaches. In this section we
describe the relevant ideas and apply them to our intera-

D :5 hz [ C : uzu , 1j,tion (1, 10). We mention that in some contexts, particularly
for discretisations of certain hyperbolic equations, the

and, given a point z [ C and a set X # C, the distancepseudo-spectral approach provides extremely clear-cut
function is defined byresults in the limit as Dx R 0 (N R y). In our case, as

Dx R 0 the symmetric b/Dx2 contribution from the diffu-
dist(z, X) :5 infhiz 2 xi2 : x [ Xj.sion overwhelms the a/Dx convection component, causing

the relevant matrices to become more normal as N R y.
Now we give a connection between matrix powers andConsequently, our conclusions are less precise and apply

pseudo-eigenvalues. This result is taken from [18]; an ear-to the case where N is large, but where the convection
lier version appears in [17]. The theorem can be regardedprocess is still dominant.
as a sharpened version of the Kreiss matrix theorem.We begin by defining the «-pseudospectrum.

THEOREM 3.1. Given A [ CN3N, let C be a constantDEFINITION 3.1 Given A [ CN3N and « . 0, the «-
and consider the three conditions:pseudospectrum of A is the set

iAmi2 # C, ;m $ 0, (3.3)L«(A) :5 hz [ C : z is an eigenvalue of A 1 E,
(3.2)

dist(l« , D) # C«, ;l« [ L«(A), « . 0, (3.4)with E [ CN3N and iEi2 # «j.
iAmi2 # exp(1) minhN, m 1 1jC, ;m $ 0. (3.5)

A number l« [ L«(A) is called an «-pseudo-eigenvalue of A.
Then (3.3) ⇒ (3.4) ⇒ (3.5).

Figure 3.1 plots some pseudo-spectral information for
the Jacobian of (1.10) at U*i 5 1, using backward differ- If we are willing to ignore the extra factor exp(1) minhN,

m 1 1j that distinguishes (3.3) from (3.5), then the theoremences with parameters N 5 32, a 5 1, Dt 5 0.9 Dtlim , and
b 5 1023. Note that this matrix was also used in the power- says that condition (3.4) is necessary and sufficient for

iAmi2 to be bounded by C. Hence, studying the maximumnorm plots of Fig. 2.1. The figure plots the boundary of
L«(A) for « 5 1025, 1027, and 1029. (Equivalently, these size of the powers is essentially equivalent to studying

dist(l« , D)/« for all « . 0. If « is large, then the crude ine-are the level curves of the resolvent: i(zI 2 A)21i2 5 1/«.)
The eigenvalues, which lie on the real axis, are marked qualities
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dist(l« , D)
«

#
ul«u
«

#
iA 1 Ei2

«
# 1 1

iAi2

«

provide an upper bound. So, in order for (3.4) to hold with
a reasonable value of C, the behaviour of dist(l« D)/« for
small « . 0 provides the key. We must avoid the situation
where l« jumps outside the unit disk for small «. Loosely,
then, for iAmi2 to be controlled, it is not just the eigenvalues
of A that must lie in D but also the eigenvalues of A 1
E for all small perturbations E. For the matrix in Fig. 3.1
we see that perturbations of size 1029 send eigenvalues
outside the unit disk. From Fig. 2.1, the power norms for
this matrix exceed 109.

The pseudo-eigenvalue characterisation in Theorem 3.1
is attractive and intuitively reasonable. However, nonnor-
mality is a difficult property to pin down, and using Theo-

FIG. 3.2. Attractivity of a fixed point where the Jacobian is bidiagonal.
rem 3.1 to get sharp bounds is likely to be difficult in
practice—what does the pseudo-spectrum of A look like
and what is the most relevant «? Further analysis is possible

Dt 5
Dx2

2b
. (3.8)

when A is triangular and Toeplitz. This case arises when
e 5 0 in (1.10). We will let S , C denote the set of points

The spectral radius of the Jacobian is simply udu ; u1 2
2ru, so the time step limit for local attractivity occurs whenS :5 hs [ C : s 5 cz 1 d, for some z [ C with uzu # 1j;
r 5 1, giving

that is, the symbol of the matrix applied to the closed unit
disk. We may now quote Theorem 2.3 from [20], specialised Dt 5

Dx2

b
. (3.9)

to the bidiagonal case.

THEOREM 3.2. The family of bidiagonal Toeplitz ma- For a numerical test, we used parameters N 5 32, a 5 1,
trices and b 5 a Dx/2, with initial data U0 from the function

f(x) 5 1 1 c(1 1 cos(2fx)). We used a range of time
steps up to the limit Dx2/b 5 0.0606 in (3.9). For each Dt,
we took 1000 steps and tested whether Un converged to
the steady state U*i ; 1. Starting with c 5 10217, we in-

AN 53
d

c 5

5 5

c d
4[ RN3N (3.6) creased c by a factor of 10, recording cmax , the largest

value of c beyond which the convergence test (2.25) failed.
Figure 3.2 plots log10 cmax against Dt. It is clear that the
limit of Dt 5 0.0303 in (3.8) that comes from the pseudo-
eigenvalue analysis is much more relevant than the Dt 5

has pseudo-spectra that satisfy 0.0606 limit in (3.9) that comes from the eigenvalues. As
Dt is increased beyond 0.0303 the maximum perturbation
that leads to convergence rapidly shrinks. The c 5 10217lim

«R0
lim
NRy

L«(AN) 5 S. (3.7)
level is effectively zero; since here f(x) ; 1 in our (double
precision) finite precision arithmetic. In these cases the
convergence condition was not actually satisfied; insteadTheorem 3.2 says that for large N and small «, the

pseudo-spectrum is close to S. (Note that S is the spectrum the iterates settled down to a spurious value of the type
discussed in Section 4.of the corresponding Toeplitz operator.) It follows that

for large N and small «, the largest pseudo-eigenvalue in We remark that Theorem 3.2 requires c and d to be the
same for all N. In the test above, the theorem is clearlymodulus has ul«u P ucu 1 udu. For the Dirichlet iteration

(1.10) with central differencing, forcing r 5 r̃/2 gives e 5 relevant for the particular choice of parameters. However,
if we solved the same problem with smaller Dx (larger N)0 in Table I. In this case, as Dt is increased from zero, the

limit beyond which ucu 1 udu ; 2r 1 u1 2 2ru leaves the then c, d, and e would change. This highlights a point made
earlier in the section: highly nonnormal matrices can ariseclosed unit disk is given by r 5 As; that is,
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steady state in situation 2 will henceforth be denoted
hU*s1 , U*s2j. From the experiments we have observed that
U*s6 is roughly of the form

U*s6 P U* 6 «(1, b, b2, ..., bN21)T, (4.1)

where « is related to the machine precision and b , 0
depends on Dt. In our experiments, using Matlab [13],
« P 1.1 3 10216. The magnitude of b increases as Dt ap-
proaches Dtlim . (Note that we implemented the iteration
in terms of matrix–vector operations, as in (1.10).)

A rigorous analysis of these phenomena would involve
FIG. 4.1. Spurious periodic solution in the presence of rounding a model of floating point arithmetic. Related work is per-

errors. formed in [11]. Here, we give a more heuristic, machine-
independent explanation of why solutions like the one seen
in Fig. 4.1 may exist in the presence of roundoff error.

This spurious steady state phenomenon is caused byfor practical choices of grid size, but as Dx R 0, the nonnor-
nonnormality rather than nonlinearity. Therefore, to sim-mality effect will become less severe.
plify the analysis, we replace the nonlinear term f(u) 5We mention that Ref. [6] also looked at the impact of
u(1 2 u) by the linear approximation 1 2 u. Experimentsnonnormality on the choice of time step. The authors stud-
show that this does not alter the qualitative results. Withied linear stability of ordinary differential equation solvers.
this modification (1.10) becomesHere, a standard condition for stability requires that Dt l

must lie in the ‘‘stability region,’’ for each eigenvalue l
of a local Jacobian. It was argued that in practice, for a Un11 5 TUn 1 cp 1 eq 1 (U* 2 Un), (4.2)
nonnormal Jacobian, Dt l« must be inside the region for
all small «. Tests showed that the Dt values chosen by where U* 5 [1, ..., 1]T is the true fixed point. (Of course,
adaptive methods automatically satisfy this more strin- this linearization does not change the value of Jacobian at
gent requirement. the fixed point U*.) By looking at (1.10) we see that the

true fixed point U* 5 [1, ..., 1]T satisfies
4. ROUNDING ERROR PHENOMENA

U* 5 TU* 1 cp 1 eq. (4.3)In the case of Dirichlet boundary conditions, the choice
Dt , Dtlim , where Dtlim is given by (2.24), ensures that the

Subtracting (4.3) from (4.2) and setting Vn 5 (Un 2 U*)fixed point U* is locally attractive. In particular, if the
we obtaininitial condition is U0 5 U* 5 (1, 1, ..., 1)T, then, in exact

arithmetic, Un ; U*. But experiments show that in floating
Vn11 5 (T 2 Dt I)Vn. (4.4)point arithmetic this behaviour does not always arise if

convection is dominating; that is, a @ b. The results in Fig.
4.1 were obtained with U0 5 U*, a 5 1, b 5 1023, N 5 32 To allow for rounding errors in (4.4), we may write
(Dx 5 1/(N 1 1)) using backward differencing with Dt 5
0.99467112840836 Dtlim . The figure shows seven successive Vn11 5 (T 2 Dt I 1 E)Vn,
time levels for large n. It is clear from the figure that the
long term solution is essentially period 2 in time. Choosing where E has small elements. As discussed in the previous
random values for Dt in the interval [0.8 Dtlim , Dtlim], we section, if T is nonnormal then T 2 Dt I 1 E may have
found that three situations typically occur: eigenvalues that are very different from those of T 2 Dt

I. This suggests that a steady state of the form (4.1) may1. Un R U*, as predicted by the theory.
arise when a vector V*s 5 (U*s6 2 U*) is a pseudo-eigenvec-2. Un converges to a spurious state that is very close
tor of T 2 Dt I, with a corresponding pseudo-eigenvalueto having period two in time, such as the one in Fig. 4.1.
l« 5 21. Assuming that the pseudo-eigenvectors of T 2

3. iUni R y. Dt I are roughly of the form (1, b, b2, ..., bN21) we can
approximate b 5 b(Dt) as a root of the quadratic equationThe third case was only observed when Dt . 0.99 Dtlim ,

but, otherwise, there was no obvious pattern in the way that
the three possibilities occurred as Dt varied. The spurious eb2 1 (d 1 1)b 1 c 5 0, (4.5)
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vn11 5 vn(1 1 Dt(1 2 vn)). However, stability of such states
will depend on c and e.

A solution (5.2) is said to be locally attractive, or more
loosely, stable, if there exist open neighbourhoods around
the Vm such that the iterates will converge to the solution
as n R y whenever U0 is in one of these neighbourhoods.
The solution will be locally attractive if

r(Jp) , 1 with Jp :5 J(Vp) ? ? ? J(V1). (5.3)

Here,

J(U) :5 C 1 Dt(I 2 2 diag(U)) (5.4)

is the Jacobian of the map in (1.8). The condition (5.3) can
FIG. 4.2. Observed and computed b in terms of Dt/Dtlim. be derived from first principles (by linearising the map),

or, alternatively, it can be found by applying Ostrowski’s
theorem to the composite map X ° G p(X), for which V1

is a fixed point.where T 2 Dt I 5 tridiag(c, d, e, 0, ..., 0). For our example,
there are two real roots of (4.5) for each Dt [ [0.8 Dtlim ,

5.1. Period-(2, 1) Solutions
Dtlim]. The root with the largest magnitude results in a
steady state with numbers exceeding the maximum floating We consider solutions of the form
point number on our system. The smallest root corresponds
closely to the observed value from our experiments. Figure U2n

j 5 j, U2n11
j 5 h

4.2 compares the observed and computed values for b in
terms of Dt/Dtlim . The deviation between observed and to the scheme
computed values of b near Dt 5 Dtlim could be caused by
the linearization in (4.2), since the size of the last few Un11

j 5 cUn
j21 1 dUn

j 1 eUn
j11 1 DtUn

j (1 2 Un
j ),

components of U*s6 is quite significant in this case.

where d 5 1 2 c 2 e. Letting n be even and odd, respec-5. SPURIOUS PERIODIC SOLUTIONS
tively, we obtain the two equations

Griffiths and Mitchell [4] study stable periodic bifurca-
h 5 j(1 1 Dt(1 2 j)), j 5 h(1 1 Dt(1 2 h)).tions of the discrete system (1.8) in the case where the

matrix defined by (1.9) is symmetric; more precisely, when
c 5 e 5 r and d 5 1 2 2r, corresponding to a 5 0 in (1.1). We ignore the trivial solution j 5 h and obtain
By applying the same techniques as Griffiths and Mitchell,
we will find conditions under which stable spurious peri- j 5 (2 1 Dt 1 ÏDt2 2 4)/(2Dt),

(5.5)odic solutions to (1.8) exist for arbitrary c and e, where
h 5 (2 1 Dt 2 ÏDt2 2 4)/(2Dt),

d 5 1 2 c 2 e. (5.1)
where j and h can be interchanged. Hence, period-(2, 1)
solutions exist for Dt . 2.This condition is necessary for the vector e ; (1, ..., 1)T

To analyse the stability of these solutions we computeto be a fixed point of (1.8). We may look for a solution to
the eigenvalues of the product of the Jacobians(1.8) that is period p in time and period q in space, where

q divides N. Such a solution can be represented by a set
J2 5 J(je)J(he).of distinct vectors V1, ..., Vp satisfying

By substituting the expressions (5.5) for j and h we obtainG(Vm) 5 V(m11) mod p, V m
j1q 5 V m

j , (5.2)

lj(J2) 5 (lj(C) 2 2)2 1 4 2 Dt2.with q minimal. We refer to this as a period-(p, q) solution.
Condition (5.1) ensures that (p, 1) states are independent
of c and e, since if Un 5 vne we obtain from (1.8) that The eigenvalues of C have the form
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lj(C) 5 (c 1 e) cos(uj) 1 d 1 i(e 2 c) sin(uj), We first consider the case N 5 2. The product of the
two Jacobians gives

uj 5 2fj/N.

Thus, the eigenvalues lie on an ellipse centered at (d, 0)
with semi-axes uc 1 eu and uc 2 eu. The necessary and J2 5 SX 1 (c 1 e)2 2A(c 1 e)

2B(c 1 e) X 1 (c 1 e)2D, X 5 AB,
sufficient conditions for the eigenvalues of J2 to lie in the
unit disk depend on N. A sufficient condition for stability

A 5 d 1 Dt(1 2 2j), B 5 d 1 Dt(1 2 2h).
could be obtained by requiring the image of the above
ellipse under the transformation z ° (z 2 2)2 1 4 2 Dt2

to be contained in the unit disk. Rather than pursuing this It is easily verified that X 5 5d2 2 Dt2. The eigenvalues
we begin by looking at the case where N is even and we of J2 are found to be
require that lN(J2), as well as lN/2(J2), be bounded by one
in the absolute value. We obtain the condition

l 5 (c 1 e 6 ÏX)2. (5.8)
maxh4, 4 1 4(d 2 1)(d 2 2)j

(5.6)
# Dt2 # minh6, 6 1 4(d 2 1)(d 2 2)j.

Note at this point that if central differencing is used for
the ux term, the stability characteristics will be the sameThis interval is nonempty for As(3 2 Ï3·) # d # As(3 1
as in the diffusion/reaction case. Now, if X 5 5d2 2Ï3·). Similarly, if 4 divides N, then we can consider the
Dt2 $ 0, the eigenvalues are real. This leads to the conditioneigenvalues lN/4(J2) and l3N/4(J2) and the corresponding

condition is

u(c 2 e)(1 1 c 1 e)u # As. (5.7)
0 # Dt2 # H4d2 if 0 # d # 1

4(d2 1 d 2 1) if 1 , d # 2.
All three choices of discretisation in Table I satisfy
uc 2 eu 5 r̃; thus period (2, 1) solutions will become unstable
for large enough values of the convection coefficient. In [4] d 5 1 2 2r # 1 for r $ 0; hence only the upper

inequality is necessary. If X , 0, the eigenvalues are com-
5.2. Period-(2, 2)* Solutions plex, and we obtain the inequality Dt2 # 2d(2d 1 1), so

stability of the (2, 2)* solution is ensured ifPeriod-(2, 2) solutions can generally occur according to
the diagram

4 · maxhd2, d2 1 d 2 1j
(5.9)

j even j odd

# Dt2 # 2d(2d 1 1) for 0 # d # 2.n even j1 h1

n odd j2 h2

For general (even) N we compute J(V2)J(V1) and obtainWe consider the special case, where j1 5 h2 :5 j, h1 5
the block circulant matrixj2 :5 h called (2, 2)* solutions by Griffiths and Mitchell

[4]. Let us assume that N is even. We get the two equations

hd 5 j(d 1 Dt(1 2 j)), jd 5 h(d 1 Dt(1 2 h)),

which have the solution

J2 51
D E F

F D E

F D

???

F D E

E F D

2,2Dtj 5 Dt 1 2d 1 ÏDt2 2 4d2,

2Dth 5 Dt 1 2d 2 ÏDt2 2 4d2,

where again j and h can be interchanged. Notice that the
periodic state only depends on the diagonal element d. In
this way we obtain two alternating spatial patterns V1 5
(j, h, j, h, ..., j, h)T and V 2 5 (h, j, h, j ..., h, j)T. where D, E, F are 2 3 2 matrices,
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(1.8) when c 5 e 5 r in a limited region of the (r, Dt) plane.
D 5 SX 1 2ce 2Be

2Ac X 1 2ce
D, E 5 S e2 0

2Ae e2D, By a continuity argument it is clear that such solutions will
also exist in the presence of a small convection term. We
have confirmed this by numerical experiments.

In conclusion, we have seen that the stable spuriousF 5 Sc 2 2Bc

0 c 2 D.
periodic solutions found by Griffiths and Mitchell [4] in
the discretised reaction diffusion equation continue to exist

We will write the eigenvectors of J2 in the form (v1 , ..., when a moderate convection term is introduced.
vN/2)T with vj [ C2. This gives the recursion

6. CONCLUDING REMARKS
Fvj21 1 (D 2 lI)vj 1 Evj11 5 0.

The phenomena outlined in this work are likely to arise
By writing from any discrete map Un11 5 G(Un), where the Jacobian

of G is nonnormal. In the Dirichlet version of model prob-
vj 5 eiujc, j 5 1, ..., N/2, lem (1.1) we fixed the reaction term and the boundary

conditions so that u ; 1 is a steady state. This is convenient
where u 5 um 5 2fm/(AsN), we get for the analysis. However, we emphasize that the underly-

ing principles apply more generally. In particular, the Neu-
(e2iuF 1 (D 2 lI) 1 eiuE)c 5 0. mann boundary condition ux ; 0 could be imposed at

x 5 0 and/or x 5 1. This preserves the steady state
We then require the determinant of this matrix to vanish, u ; 1. The corresponding linear stability analysis in [7]
which gives (for the case of central differences) shows that the nonnor-

mality effect is still relevant. More general Dirichlet or
(X 1 q2 2 l)2 5 4Xq2 ⇔ l 5 (q 6 ÏX)2, (5.10) mixed boundary conditions could also be considered, but

these may give rise to steady states that are not spatially
with q 5 e exp(iu/2) 1 c exp(2iu/2). Consistency with the uniform, which complicates the analysis considerably. The
Mitchell and Griffiths case is seen by observing that when precise form of the logistic reaction term f(u) 5 u(1 2 u),
c 5 e 5 r we get q 5 4r 2 cos2(u/2). For the eigenvalues which is commonly used in mathematical biology, did not
corresponding to u 5 0, (5.10) reduces to (5.8) so a neces- play a central role in the analysis. It is clear from Eq. (2.10)
sary condition for stability is (5.9). If we assume that 4 that Corollary 2.1 is readily adapted to any f for which f 0
divides N/2, we can consider the eigenvalues correspond- can be bounded.
ing to m 5 Af(N/2). When X 5 5d2 2 Dt2 $ 0 the eigenvalues
are complex and we find APPENDIX: THEORETICAL RESULT

The following theorem gives conditions on the initialulu 5 (e 2 c)2 1 X # 1 ⇒ 5d2

data under which solutions to the Dirichlet problem con-
1 (e 2 c)2 2 1 # Dt2 # 5d2. verge to u(x, t) ; 1 as t R y.

THEOREM 7.1. Consider the reaction-convection–If 2X $ 0, the eigenvalues corresponding to m 5 N/8 are
diffusion equationpurely imaginary numbers and we find that we must impose

the condition
ut 1 aux 5 buxx 1 u(1 2 u) in (0, 1) 3 (0, y),

5d2 # Dt2 # 5d2 1 (1 2 ue 2 cu)2, ue 2 cu # 1.
with a, b constant, b . 0, subject to the initial and bound-

In conclusion, in the case that 8 divides N we have the ary conditions
necessary conditions

u(x, 0) 5 f(x) [ C1, u(0, t) 5 u(1, t) 5 1.
5d2 1 (e 2 c)2 2 1 # Dt2

If the initial data f(x) satisfies either# 5d2 1 (1 2 ue 2 cu)2, ue 2 cu # 1.

• 0 # f(x) # 1 for all 0 # x # 1, or
Note in particular that stable (2, 2)* solutions cannot exist

• f(x) $ 1 for all 0 # x # 1,
if ue 2 cu exceeds one.

Mitchell and Griffiths [4] use perturbation theory to then the solution u(x, t) is bounded for all t . 0 and con-
verges pointwise to the steady state u(x, t) ; 1 as t R y.establish the existence of stable period-(4, 1) solutions to
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The proof relies on the following two theorems. Hence, the comparison theorem gives u(x, t) $ w(x, t) ;
0 in [0, 1] 3 [0, T ]. Similarly, using w(x, t) ; 1 shows that

THEOREM 7.2 (Comparison theorem). Given constants u(x, t) # 1 in [0, 1] 3 [0, T ].
T . 0 and A, B, and a continuously differentiable function The validity of the assumption that u(x, t) is bounded
f : R ° R, let u(x, t) and v(x, t) be bounded functions satis- for 0 # t # T can be confirmed by contradiction. If u(x,
fying t) is not bounded then there exists a 0 # t* # T such that

ut 1 aux 2 buxx 2 f(u) max
(x,t)[[0,1]3[0,t*]

uu(x, t)u 5 2.
$ vt 1 avx 2 bvxx 2 f(v) in (0, 1) 3 (0, T),

But the comparison arguments above can be applied to
with a, b constant, b . 0, together with show 0 # u(x, t) # 1 in [0, 1] 3 [0, t*], giving the contra-

diction.
B $ u(0, t) $ v(0, t) $ A, Next, let u 5 1 2 v. The function v satisfies 0 # v(x, t)

# 1 in [0, 1] 3 [0, T ] and, hence,B $ u(1, t) $ v(1, t) $ A, for 0 # t # T,

0 5 vt 1 avx 2 bvxxand

1 v(1 2 v) $ vt 1 avx 2 bvxx in (0, 1) 3 (0, T).
B $ u(x, 0) $ v(x, 0) $ A, for 0 , x , 1.

Letting v̂ satisfy
Then u(x, t) $ v(x, t) in [0, 1] 3 [0, T ].

v̂t 1 av̂x 2 bv̂xx 5 0 in (0, 1) 3 (0, T)Proof. For a 5 0, the result is proved in [12, Theorem
10.4c, p. 236]. With a ? 0, we can use the technique of

andproof in [12], appealing to the more general version of the
strong maximum principle theorem in [16, Theorem 7,
p. 174]. v̂(x, 0) 5 1 2 f(x) $ 0, v̂(0, t) 5 v̂(1, t) 5 0,

THEOREM 7.3. Consider the linear reaction-convection–
we see that the comparison theorem (with f ; 0) can bediffusion equation
applied to give v̂(x, t) $ v(x, t) in [0, 1] 3 [0, T ]. Also,
Theorem 7.3 gives v̂(x, t) R 0 as t R y, so that v(x, t) R

wt 1 awx 5 bwxx in (0, 1) 3 (0, y),
0, as required.

The proof for the case where f(x) $ 1 for all 0 #
with a, b constant, b . 0, subject to the initial and bound- x # 1 is similar. Comparison with w(x, t) ; 1 shows that
ary conditions u(x, t) $ 1. Writing v 5 u 2 1 leads to

w(x, 0) 5 c(x) $ 0, c(x) [ C1, w(0, t) 5 w(1, t) 5 0. 0 5 vt 1 avx 2 bvxx 1 v(1 1 v) $ vt 1 avx 2 bvxx .

Then w(x, t) is bounded for all t and converges pointwise Letting v̂ satisfy
to the steady state w(x, t) ; 0 as t R y.

v̂t 1 av̂x 2 bv̂xx 5 0 in (0, 1) 3 (0, T)Proof. The result can be proved by elementary tech-
niques, such as separation of variables.

and
Proof of Theorem 7.1. Consider the case 0 # f(x) #

1 for all 0 # x # 1. Given any T . 0, assume for the
v̂(x, 0) 5 f(x) 2 1 $ 0, v̂(0, t) 5 v̂(1, t) 5 0,moment that u(x, t) is bounded for 0 # t # T. The first

step is to show that 0 # u(x, t) # 1 in [0, 1] 3 [0, T ].
we see that the comparison theorem can be applied to giveThe function w(x, t) ; 0 trivially satisfies
v̂(x, t) $ v(x, t) in [0, 1] 3 [0, T ]. Theorem 7.3 gives
v̂(x, t) R 0 as t R y, so that v(x, t) R 0, as required.wt 1 awx 2 bwxx 1 w(1 2 w) 5 0 in (0, 1) 3 (0, T),
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